diagonalisation
This commit is contained in:
parent
f4633d2ba4
commit
5a0fc2f782
@ -213,3 +213,5 @@ donc de la forme
|
||||
0 &0 &z\\\\
|
||||
\end{pmatrix}
|
||||
\\]
|
||||
|
||||
Remarque: Diagonaliser une matrice associée à \\( L : V \to V \\) revient à trouver une base de V constituée de [vecteur propres](./vpropres.md) de L
|
||||
|
@ -2,6 +2,21 @@
|
||||
|
||||
- Soit \\( M \\) une matrice \\( n \times n \\). Soit \\( L: V \to V \\) une application linéaire
|
||||
- Soit \\( v \in V \\) un vecteur **Non-Nul**.
|
||||
- On dit que \\( v \\) est un **Vecteur propre** de \\( L/M \\) ssi
|
||||
- On dit que \\( v \\) est un **vecteur propre** de \\( L/M \\) ssi
|
||||
- \\( \exists \lambda \in \mathbb{R} \quad L(v) = \lambda v / Mv = \lambda v \\)
|
||||
- Ce \\( \lambda est la **valeur propre** associée à v \\)
|
||||
- l'ensemble des vecteurs propres d'une valeur propres est **un espace propre**
|
||||
|
||||
En passant par les matrice, on a bien que \\( Mv = \lambda v \\) et on peut transformer cette equation en \\( (M - \lambda 𝟙 )* v = 0 \\)
|
||||
|
||||
Pour isoler lambda on peut alors faire \\( det(M - \lambda 𝟙 ) = 0 \\) qui nous permet alors de trouver les vecteurs et espaces propres
|
||||
|
||||
## Diagonalisable
|
||||
|
||||
- Soit \\( L : V \to V \quad dim(V) = n \\)
|
||||
- L est [**Diagonalisable**](./matrix.md#diagonalisation) ssi
|
||||
- Il existe n vecteurs propres de L linéairement indépendants
|
||||
|
||||
- Donc toutes les matrices ne sont pas diagonalisables!
|
||||
- Si pas dans \\( \mathbb{R} \\) pour être dans les complexes
|
||||
- attention aux dimentiosn de l'éspaces propre
|
||||
|
Loading…
Reference in New Issue
Block a user