Compare commits

12 Commits

Author SHA1 Message Date
4aa559772c Filtre de Canny terminé;
Ajout des fonctions utiles au filtre de Canny dans 'usefull_func.py'
Pas de modification important dans 'sobel.py'
2022-11-10 16:26:09 +01:00
7da1c028ac Merge branch 'first_add_comments' of https://git.herisson.ovh/Darkan/image_python.git
# Conflicts:
#	.gitignore

Signed-off-by: Andy K <donfackandy@gmail.com>
2022-11-09 11:17:09 +01:00
975e7b9c23 Merge branch 'window' of https://git.herisson.ovh/Darkan/image_python.git 2022-11-09 11:10:00 +01:00
e345a69657 Debut de la creation d'une fenêtre avec tkinter 2022-11-09 09:26:22 +01:00
3d071bae42 Merge pull request 'files_organisation' (#5) from files_organisation into master
Reviewed-on: #5
2022-11-09 08:47:55 +01:00
fc6ed23f4c deleting __pycache__ 2022-11-08 22:36:41 +01:00
3810e0bc88 modif .gitignore 2022-11-08 22:25:00 +01:00
450908c2b8 Update
Signed-off-by: Andy K <donfackandy@gmail.com>
2022-11-08 22:20:56 +01:00
34cc884c5d Re-add .gitignore
Signed-off-by: Andy K <donfackandy@gmail.com>
2022-11-08 22:03:21 +01:00
346dff092d Update
Signed-off-by: Andy K <donfackandy@gmail.com>
2022-11-08 21:48:36 +01:00
1e2225337e Ajout de .gitignore
Signed-off-by: Andy K <donfackandy@gmail.com>
2022-11-08 21:40:49 +01:00
8e5d626074 Réorganisation des fichiers et des fonctions
Ajout de 'main.py'
    Ajout de :
        filters\
                \sobel.py
                \canny.py
                \usefull_func.py
    All pictures in 'images\' directory had been renamed
2022-11-08 21:27:09 +01:00
86 changed files with 364 additions and 297 deletions

6
.gitignore vendored Normal file
View File

@ -0,0 +1,6 @@
.vscode/
imageEngine/images/
imageEngine/test/
imageEngine/__pycache__/
imageEngine/filters/__pycache__/
imageEngine/test.py

View File

@ -1,3 +0,0 @@
{
"python.analysis.typeCheckingMode": "basic"
}

View File

@ -0,0 +1,32 @@
from copy import deepcopy
from filters.usefull_func import *
from math import sqrt, atan2, pi
def filtreCanny(img, Th):
Tl = Th / 2
filtred_image = filtre_gaussien(img)
norme_gradient, angle_normale_gradient = calculGradient(filtred_image)
non_maxima = dltNoMaxima(norme_gradient, angle_normale_gradient)
contours = seuillageHysteresis(non_maxima, angle_normale_gradient, Th, Tl)
return contours
"""
def filtreCannySemiAuto(img, centile):
filtred_image = filtre_gaussien(img)
norme_gradient, angle_normale_gradient = calculGradient(filtred_image)
non_maxima = dltNoMaxima(norme_gradient, angle_normale_gradient)
Th = calculTh(norme_gradient, centile)
Tl = Th / 2
contours = seuillageHysteresis(non_maxima, angle_normale_gradient, Th, Tl)
return contours
"""

View File

@ -0,0 +1,15 @@
from filters.usefull_func import *
def filtre_sobel(img):
if not is_greyscale(img):
img = greyscale(img)
mat_x = [[-1,0,1],[-2,0,2],[-1,0,1]]
mat_y = [[-1,-2,-1],[0,0,0],[1,2,1]]
Gx = convolution(img, mat_x)
Gy = convolution(img, mat_y)
filtred_image = application_norme(Gx,Gy)
return filtred_image

View File

@ -0,0 +1,293 @@
from copy import deepcopy
from math import atan2, sqrt, pi
def greyscale(mat_img):
gray_img = []
for ligne in mat_img:
lig = []
for r,g,b in ligne:
v = int(r*0.2125 + g*0.7154 + b*0.0721)
lig.append((v,)*3)
gray_img.append(lig)
return gray_img
def appliquer_convolution(img, mat, i, j):
somme = 0
for x in range(len(mat)):
for y in range(len(mat[0])):
coord_i = i - (len(mat) // 2) + x
corrd_j = j - (len(mat[0]) // 2) + y
pix = pixel(img, coord_i, corrd_j)
somme += pix[0]*mat[x][y]
return min(max(somme,0), 255)
def convolution(mat_img, mat):
return_img = []
for i in range(len(mat_img)):
ligne = []
for j in range(len(mat_img[0])):
val = appliquer_convolution(mat_img, mat, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def is_greyscale(img):
_greyscale = True
for ligne in img:
for r,g,b in ligne:
if not (r==g and g==b):
_greyscale = False
break
if not _greyscale:
break
return _greyscale
def invert(img):
result_image = []
for ligne in img:
result_ligne = []
for r,g,b in ligne:
result_ligne.append((255-r, 255-g, 255-b))
result_image.append(result_ligne)
return result_image
def pixel(img, i, j, default=(0,0,0)):
#i la colone et j la ligne
if 0 <= i < len(img) and 0 <= j < len(img[0]):
return img[i][j]
else:
return default
def reduction_bruit(img, mat, i, j):
somme = 0
for x in range(len(mat)):
for y in range(len(mat[0])):
pixel_i = i - (len(mat) // 2) + x
pixel_j = j - (len(mat[0]) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[x][y]
normalise = round(somme)
return normalise
def filtre_gaussien(mat_img):
mat_gauss = [
[2/159, 4/159, 5/159, 4/159,2/159],
[4/159, 9/159,12/159, 9/159,4/159],
[5/159,12/159,15/159,12/159,5/159],
[4/159, 9/159,12/159, 9/159,4/159],
[2/159, 4/159, 5/159, 4/159,2/159]
]
return_img = []
for i in range(len(mat_img)):
ligne = []
for j in range(len(mat_img[0])):
val = reduction_bruit(mat_img, mat_gauss, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def calcul_norme(pixel1, pixel2):
valeur = pixel1[0]**2 + pixel2[0]**2
norm = round(sqrt(valeur))
norm = int(min(norm, 255))
return norm
def application_norme(im_x, im_y):
result_image = []
for i in range(len(im_x)):
ligne = []
for j in range(len(im_x[0])):
pixel1 = im_x[i][j]
pixel2 = im_y[i][j]
norme = calcul_norme(pixel1, pixel2)
ligne.append((norme,)*3)
result_image.append(ligne)
return result_image
def calculGradient(filtred_image):
mask_x = [[1, 0, -1]]
mask_y = [[1],[0],[-1]]
mask_gradient_x = convolution(filtred_image, mask_x)
mask_gradient_y = convolution(filtred_image, mask_y)
norme_gradient = copyNullMatrix(filtred_image)
angle_normal_gradient = copyNullMatrix(filtred_image)
for i in range(len(filtred_image)):
for j in range(len(filtred_image[0])):
Jx = mask_gradient_x[i][j][0]
Jy = mask_gradient_y[i][j][0]
norme_gradient[i][j] = sqrt(Jx**2 + Jy**2)
angle_temp = atan2(Jy,Jx)
angle_normal_gradient[i][j] = transform_angle(angle_temp)
return norme_gradient, angle_normal_gradient
def copyNullMatrix(mat):
nullMat = deepcopy(mat)
for i in range(len(nullMat)):
for j in range(len(nullMat[0])):
nullMat[i][j] = 0
return nullMat
def transform_angle(radient):
angle = radient * 180 / pi
if angle < 0:
angle += 180
#On veut que la valeur de l'angle soit 0, 45, 90 ou 135°
seuil_min_45 = 45/2
seuil_min_90 = (90+45)/2
seuil_min_135 = (135+90)/2
seuil_max_135 = (180+135)/2
if seuil_min_45 <= angle < seuil_min_90:
angle = 45
elif seuil_min_90 <= angle < seuil_min_135:
angle = 90
elif seuil_min_135 <= angle < seuil_max_135:
angle = 135
else:
angle = 0
return angle
def dltNoMaxima(norme_gradient, angle_normal_gradient):
non_maxima = copyNullMatrix(norme_gradient)
for i in range(len(non_maxima)):
for j in range(len(non_maxima[0])):
angle = angle_normal_gradient[i][j]
voisin1, voisin2 = norm_voisin(norme_gradient, angle, i, j)
if norme_gradient[i][j] < voisin1 or norme_gradient[i][j] < voisin2:
non_maxima[i][j] = 0
else:
non_maxima[i][j] = norme_gradient[i][j]
return non_maxima
def get_norm(norm_list, i, j):
norm = 0
if 0 <= i < len(norm_list) and 0 <= j < len(norm_list[0]):
norm = norm_list[i][j]
return norm
def norm_voisin(norm_list, angle, i, j):
voisin1 = None
voisin2 = None
if angle == 0:
voisin1 = get_norm(norm_list,i,j-1)
voisin2 = get_norm(norm_list,i,j+1)
elif angle == 45:
voisin2 = get_norm(norm_list,i-1,j+1)
voisin1 = get_norm(norm_list,i+1,j-1)
elif angle == 90:
voisin1 = get_norm(norm_list,i-1,j)
voisin2 = get_norm(norm_list,i+1,j)
elif angle == 135:
voisin2 = get_norm(norm_list,i-1,j-1)
voisin1 = get_norm(norm_list,i+1,j+1)
return voisin1, voisin2
def seuillageHysteresis(non_maxima, angle_normale_gradient, Th, Tl):
contours = deepcopy(non_maxima)
for i in range(len(angle_normale_gradient)):
for j in range(len(angle_normale_gradient[0])):
if non_maxima[i][j] > Th:
contours[i][j] = (255,)*3
elif non_maxima[i][j] < Tl:
contours[i][j] = (0,)*3
for i in range(len(angle_normale_gradient)):
for j in range(len(angle_normale_gradient[0])):
if Tl <= non_maxima[i][j] <= Th:
angle = angle_normale_gradient[i][j] + 90
if angle >= 180:
angle -= 180
voisin1, voisin2 = norm_voisin(non_maxima, angle, i, j)
if voisin1 > Th and voisin2 > Th:
contours[i][j] = (255,)*3
else:
contours[i][j] = (0,)*3
return contours
"""
def calculTh(norme_gradient, centile):
histogramme, pas = calculHistogram(norme_gradient)
fonctionRepartition = calculFonctionRepartition(histogramme)
nbrPixels = len(norme_gradient)*len(norme_gradient[0])
pivot = nbrPixels * centile
Th_index = 0
for i in range(len(fonctionRepartition)):
if (pivot - fonctionRepartition[0][Th_index]) > (pivot - fonctionRepartition[0][i]) and (pivot - fonctionRepartition[i] > 0):
Th_index = i
Th = pas * (Th_index - 1)
return Th
def calculHistogram(norme_gradient):
norme_max = Maxi(norme_gradient)
norme_min = Minim(norme_gradient)
ecart = norme_max - norme_min
nb_pas = 1000
pas = ecart / (nb_pas - 1)
histogram = [[0]*nb_pas]
for i in range(len(norme_gradient)):
for j in range(len(norme_gradient[0])):
valeur_pixel = norme_gradient[i][j]
position = floor((valeur_pixel - norme_min) / pas)
histogram[0][position] += 1
return histogram, pas
def calculFonctionRepartition(histogram):
fonctionRepartition = deepcopy(histogram)
for i in range(1, len(fonctionRepartition[0])):
fonctionRepartition[0][i] = fonctionRepartition[0][i-1] + histogram[0][i-1]
return fonctionRepartition
def Maxi(mat):
mx = 0
for i in range(len(mat)):
for j in range(len(mat[0])):
if mat[i][j] > mx:
mx = mat[i][j]
return mx
def Minim(mat):
mn = 1000
for i in range(len(mat)):
for j in range(len(mat[0])):
if mat[i][j] < mn:
mn = mat[i][j]
return mn
"""

Binary file not shown.

Before

Width:  |  Height:  |  Size: 989 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 548 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

18
imageEngine/main.py Normal file
View File

@ -0,0 +1,18 @@
from tkinter import Tk, N, W, E, S, StringVar
from tkinter import ttk
class Window(Tk):
"""This is the class for the window systeme"""
def __init__(self, title):
Tk.__init__(self)
self.title = title
# TODO: Affichage ici
if __name__ == "__main__":
w = Window("test")
w.mainloop()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 568 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 218 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 340 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 201 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 237 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 561 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 135 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

View File

@ -1,294 +0,0 @@
import umage as um
from math import sqrt, atan2, sin, cos, pi
def greyscale(mat_img):
gray_img = []
for ligne in mat_img:
lig = []
for r,g,b in ligne:
v = int(r*0.2125 + g*0.7154 + b*0.0721)
lig.append((v,)*3)
gray_img.append(lig)
return gray_img
def convolution(mat_img, mat):
return_img = []
for j in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
val = appliquer_convolution(mat_img, mat, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def filtre_sobel(img):
def calcul_norme(pixel1, pixel2):
valeur = pixel1[0]**2 + pixel2[0]**2
norm = round(sqrt(valeur))
norm = int(min(norm, 255))
return norm
def application_norme(im_x, im_y):
result_image = []
for j in range(len(im_x)):
ligne = []
for i in range(len(im_x[0])):
pixel1 = im_x[j][i]
pixel2 = im_y[j][i]
norme = calcul_norme(pixel1, pixel2)
ligne.append((norme,)*3)
result_image.append(ligne)
return result_image
if not is_greyscale(img):
img = greyscale(img)
mat_x = [[-1,0,1],[-2,0,2],[-1,0,1]]
mat_y = [[-1,-2,-1],[0,0,0],[1,2,1]]
Gx = convolution(img, mat_x)
Gy = convolution(img, mat_y)
filtred_image = application_norme(Gx,Gy)
return filtred_image
#########################################################################
########################Exercices Supplémentaires########################
#########################################################################
def is_greyscale(img):
_greyscale = True
for ligne in img:
for r,g,b in ligne:
if not (r==g and g==b):
_greyscale = False
break
if not _greyscale:
break
return _greyscale
def invert(img):
result_image = []
for ligne in img:
result_ligne = []
for r,g,b in ligne:
result_ligne.append((255-r, 255-g, 255-b))
result_image.append(result_ligne)
return result_image
def pixel(img, i, j, default=(0,0,0)):
#i la colone et j la ligne
if 0 <= i < len(img[0]) and 0 <= j < len(img):
return img[j][i]
else:
return default
def appliquer_convolution(img, mat, i, j):
somme = 0
for y in range(len(mat)):
for x in range(len(mat[0])):
pixel_i = i - (len(mat[0]) // 2) + x
pixel_j = j - (len(mat) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[y][x]
return min(max(somme,0), 255)
######################################################################
########################Exercices personnelles########################
######################################################################
def convolution_gauss(mat_img):
mat_gauss = [
[2/159, 4/159, 5/159, 4/159,2/159],
[4/159, 9/159,12/159, 9/159,4/159],
[5/159,12/159,15/159,12/159,5/159],
[4/159, 9/159,12/159, 9/159,4/159],
[2/159, 4/159, 5/159, 4/159,2/159]
]
return_img = []
for j in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
val = reduction_bruit(mat_img, mat_gauss, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def reduction_bruit(img, mat, i, j):
somme = 0
for y in range(len(mat)):
for x in range(len(mat[0])):
pixel_i = i - (len(mat[0]) // 2) + x
pixel_j = j - (len(mat) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[y][x]
normalise = round(somme)
return normalise
def filtre_canny(img):
def norme_gradient(pixel1, pixel2):
color_x = pixel1[0]
color_y = pixel2[0]
norm = round(sqrt(color_x**2 + color_y**2))
norm = min(norm, 255)
grad = atan2(color_y, color_x)
return norm, grad
def liste_normGrad(im1, im2):
liste = []
for j in range(len(im1)):
ligne = []
for i in range(len(im1[0])):
normGrad = norme_gradient(im1[j][i], im2[j][i])
ligne.append(normGrad)
liste.append(ligne)
return liste
if not is_greyscale(img):
img = greyscale(img)
mat_x = [[-1,0,1]]
mat_y = [[1],[0],[-1]]
#lissage/suppression des bri
img_no_bruit = convolution_gauss(img)
Jx = convolution(img, mat_x)
Jy = convolution(img, mat_y)
normGrad = liste_normGrad(Jx, Jy)
#Suppresion des non-maximum
#temp
def norme_gradient(pixel1, pixel2):
color_x = pixel1[0]
color_y = pixel2[0]
norm = round(sqrt(color_x**2 + color_y**2))
norm = min(norm, 255)
grad = atan2(color_y, color_x)
return norm, grad
#temp
def liste_normGrad(im1, im2):
liste = []
for j in range(len(im1)):
ligne = []
for i in range(len(im1[0])):
normGrad = norme_gradient(im1[j][i], im2[j][i])
ligne.append(normGrad)
liste.append(ligne)
return liste
mat_x = [[-1,0,1]]
mat_y = [[1],[0],[-1]]
#temp
#lissage
img = um.load("imageEngine\\images\\valve.png")
img = convolution_gauss(img)
Jx = convolution(img, mat_x)
Jy = convolution(img, mat_y)
normGrad = liste_normGrad(Jx, Jy)
###########
def find_neighbord_norm(mat, i, j, rad):
x = 0
y = 0
if sin(pi/8) <= abs(sin(rad)):
y = 1
if cos(3*pi/8)>abs(cos(rad)):
x = 1
norm_pix1 = -1
norm_pix2 = -1
if 0 <= j-y < len(mat):
if 0 <= i-x < len(mat[0]):
norm_pix1 = mat[j-y][i-x][0]
if 0 <= j+y < len(mat):
if 0 <= i+x < len(mat[0]):
norm_pix2 = mat[j+y][i+x][0]
return norm_pix1, norm_pix2
def delete_pixel(mat_img, mat):
img_to_return = []
for j in range(len(mat)):
ligne = []
for i in range(len(mat[0])):
rad = mat[j][i][1]
norms = find_neighbord_norm(mat, i, j, rad)
if rad < norms[0] or rad < norms[1]:
ligne.append((0,)*3)
else:
ligne.append(mat_img[j][i])
img_to_return.append(ligne)
return img_to_return
"""
def hysteresis(mat_img, mat_norm, Th):
Tl = Th / 2
mat_img = yesOrNo(mat_img, Th, Tl)
result_image = []
for j in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
rad = mat_norm[j][i][1]
color1, color2 = find_neighbord_pixel(mat_img, i, j, rad+(pi/2))
if color1 == 255 or color2 == 255:
ligne.append((255,)*3)
else:
ligne.append((0,)*3)
result_image.append(ligne)
return result_image
def find_neighbord_pixel(mat_image, i, j, rad):
x = 0
y = 0
if sin(pi/8) <= abs(sin(rad)):
y = 1
if cos(3*pi/8)>abs(cos(rad)):
x = 1
color_pix1 = 0
color_pix2 = 0
if 0 <= j-y < len(mat_image):
if 0 <= i-x < len(mat_image[0]):
color_pix1 = mat_image[j-y][i-x][0]
if 0 <= j+y < len(mat_image):
if 0 <= i+x < len(mat_image[0]):
color_pix2 = mat_image[j+y][i+x][0]
return color_pix1, color_pix2
def yesOrNo(mat_img, Th, Tl):
result_image = []
for j in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
pix = mat_img[j][i]
if Th <= pix[0]:
ligne.append((255,)*3)
elif pix[0] < Tl:
ligne.append((0,)*3)
else:
ligne.append(pix)
result_image.append(ligne)
return result_image
zt_no_maxima = delete_pixel(img, normGrad)
zt_hysteresis = hysteresis(zt_no_maxima, normGrad, 200)
um.save(zt_hysteresis, "imageEngine\\test\\valve", "png")
"""

Binary file not shown.

Before

Width:  |  Height:  |  Size: 392 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 480 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 312 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 215 KiB

BIN
new2.jpg

Binary file not shown.

Before

Width:  |  Height:  |  Size: 134 KiB