Files
mdcours/src/math/all/matrix.md

5.1 KiB

Les Matrices

On considére un system:

\[ \begin{cases} x - 2y + 3z = 4 \\ 2x + y - 4z = 3 \\ -3x + 5y -z = 0 \end{cases} \]

Un système est caractérisé par ses cohéfficients et par les thermes indépendants. Les nombres sont placés à des positions bien précises. On peut représenter ces nombres dans un tableau

\[ \begin{pmatrix} 1 &-2 &3 &4 \\ 2 &1 &-4 &3 \\ -3 &5 &-1 &0 \end{pmatrix} \text{ On dit que M est une matrice de taille } 3 * 4 \]

Une matrice de taille \( m * n \quad (m,n \in \mathbb{N}_ 0 ) \) est un tableau dont les éléments sont rangés selon m lignes et n colonnes

\[ A = \begin{pmatrix} a_{11} &a_{12} &\cdots &a_{1n} \\ a_{21} &a_{22} &\cdots &\vdots \\ \vdots &\vdots &\ddots &\vdots \\ a_{m1} &\cdots &\cdots &a_{mn} \end{pmatrix} a_{23} \text{ est situé 2e ligne, 3e colonne } \\ A = (a_{ij} a_{ij} \text{ est un terme de } A) \]

Operations sur les matrices

Egalitée

\( A = B \iff A \text{ et } B \) ont la même taille et \( a_{ij} = b_{ij} \quad \forall i,j \)

Transposition

\( A^t \) est la matrice dont les lignes et les colonnes de \( A \) sont inversée

Exemple

\[ A = \begin{pmatrix} 1 &2 \\ 3 &4 \end{pmatrix} A^t = \begin{pmatrix} 1 &3 \\ 2 &4 \end{pmatrix} \]

Produit par un scalaire

  • Soit \( A \in \mathbb{R}^{m * n} \quad k \in \mathbb{R} \)
    • La matrice \( k * a \) est une matrice \( B \) de taille \( m * n \) tel que
      • \( b_{ij} ka_{ij} \quad \forall i,j \)

Exemple

\[ 2\begin{pmatrix} 1 &2 &3\\ 4 &5 &6 \end{pmatrix} = \begin{pmatrix} 2 &4 &6\\ 8 &10 &12 \end{pmatrix} \]

Produit de 2 matrices

\[ A * B = C \quad \begin{align} c_{ij} &= a_{ij} * b_{ij} + ... a_{in} * b_{nj} \\ &= \displaystyle\sum_{k=1}^{n} a_{ik} * b_{kj} \end{align} \]

Exemple

\[ \begin{pmatrix} 2 &1 &-1 \\ 3 &0 &2 \end{pmatrix} * \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 - 2 - 2 \\ 3 + 0 + 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 7 \end{pmatrix} \]

Résoudre des système d'équation

Via l'échelonnement des matrices

  1. \( [A | B] \) (A augmenté de B)
  2. Echeloner notre matrice ( Grace aux transformations elementaires ci-dessous )
    • \( L_i \leftrightarrow L_j\) (Echange de lignes)
    • \( L_i \gets \alpha L_i \quad \alpha \in \mathbb{R} \)
    • \( L_i \gets L_i + L_j \)
  3. Revenir au système et trouver S

Via le calcul de déterminants

Un déterminant est un réel calculé sur une matrice carrée

La méthode de Sarros

Cette méthode ne fonctionne que pour les matrices 2x2 et 3x3

2x2
  • Soit \( A \in \mathbb{R}^{2 * 2} \) \[ \det A = \begin{vmatrix} a_{11} &a_{12} \\ a_{21} &a_{22} \end{vmatrix} = (a_{11} * a_{22}) - (a_{12} * a_{21}) \]
3x3
  • Soit \( B \in \mathbb{R}^{3 * 3} \) \[ \det B = \begin{vmatrix} b_{11} &b_{12} &b_{13} \\ b_{21} &b_{22} &b_{23} \\ b_{31} &b_{32} &b_{33} \\ \end{vmatrix} = (b_{11} * b_{22} * b_{33}) + (b_{12} * b_{23} * b_{31}) + (b_{13} * b_{21} * b_{32}) - (b_{13} * b_{22} * b_{31}) - (b_{12} * b_{21} * b_{33}) - (b_{11} * b_{23} * b_{32}) \]

La méthode des cofacteurs

Utilisé pour les matrices + grandes ou égales à 3x3

  • Un Mineur de l'élément \( a_{ij} \) est le déterminant de la matrice \( Aij \)

    • C'est à dire la matrice \( A \) où on a supprimé la ligne i et la conlonne j
      • On la note \( M_{ij} \)
  • Le Cofacteur de la position ij est le nombre \( (-1)^{i+j} * M_{ij} \)

    • On le note \( C_{ij} \)

On choisit ensuite une ligne a déveloper, au plus il y a de zeros au mieux c'est

  • Soit \( A \in \mathbb{R}^{n * n} \)
    • Si on développe la ie Ligne
      • \( \forall 1 \leq i \leq n \quad \det A = \displaystyle\sum_{j=n}^n a_{ij} * C_{ij} \)

Inverse d'une matrice

Sachant que l'inverse d'un réel \( x \) est \( x^{-1} \) tel que \( x * x^{-1} = 1\)

On peut étendre cette définition aux matrice pour que \( A * A^{-1} * A = \mathbb{I} \) Une matrice nxn est inversible ssi \( \det A \neq 0 \)

On peut trouver cette matrice inverse à l'aide de la matrice ompagnon.

  1. On vérifie que le détérminanat est différent de 0
  2. On applique des transformations élémentaires sur A et sur \( \mathbb{I} \) en même temps jusqu'a transformer \( A \text{ en } \mathbb{I}\)

Mais comment utiliser la matrice inverse pour résoudre un system?

On sait que \( A \cdot x = b \) est la représentation d'un système en matrice. \[ \begin{align} A*x &= b \\ A^{-1} * A * x &= A^{-1} * b \\ \mathbb{I} * x &= A^{-1} * b \\ x &= A^{-1} * b \end{align} \]

où x est la matrice de variable, on aura donc nos solutions directement en mutlipliant nos matrices