image_python/re_serie_7.py
2022-11-05 20:48:53 +01:00

165 lines
4.5 KiB
Python

import umage as um
from math import sqrt, atan2
def greyscale(mat_img):
gray_img = []
for ligne in mat_img:
lig = []
for r,g,b in ligne:
v = int(r*0.2125 + g*0.7154 + b*0.0721)
lig.append((v,)*3)
gray_img.append(lig)
return gray_img
def convolution(mat_img, mat):
return_img = []
for j in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
val = appliquer_convolution(mat_img, mat, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def filtre_sobel(img):
def calcul_norme(pixel1, pixel2):
valeur = pixel1[0]**2 + pixel2[0]**2
norm = round(sqrt(valeur))
norm = int(min(norm, 255))
return norm
def application_norme(im_x, im_y):
result_image = []
for j in range(len(im_x)):
ligne = []
for i in range(len(im_x[0])):
pixel1 = im_x[j][i]
pixel2 = im_y[j][i]
norme = calcul_norme(pixel1, pixel2)
ligne.append((norme,)*3)
result_image.append(ligne)
return result_image
if not is_greyscale(img):
img = greyscale(img)
mat_x = [[-1,0,1],[-2,0,2],[-1,0,1]]
mat_y = [[-1,-2,-1],[0,0,0],[1,2,1]]
Gx = convolution(img, mat_x)
Gy = convolution(img, mat_y)
filtred_image = application_norme(Gx,Gy)
return filtred_image
#########################################################################
########################Exercices Supplémentaires########################
#########################################################################
def is_greyscale(img):
_greyscale = True
for ligne in img:
for r,g,b in ligne:
if not (r==g and g==b):
_greyscale = False
break
if not _greyscale:
break
return _greyscale
def invert(img):
result_image = []
for ligne in img:
result_ligne = []
for r,g,b in ligne:
result_ligne.append((255-r, 255-g, 255-b))
result_image.append(result_ligne)
return result_image
def pixel(img, i, j, default=(0,0,0)):
#i la colone et j la ligne
if 0 <= i < len(img[0]) and 0 <= j < len(img):
return img[j][i]
else:
return default
def appliquer_convolution(img, mat, i, j):
somme = 0
for y in range(len(mat)):
for x in range(len(mat[0])):
pixel_i = i - (len(mat[0]) // 2) + x
pixel_j = j - (len(mat) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[y][x]
return min(max(somme,0), 255)
######################################################################
########################Exercices personnelles########################
######################################################################
def convolution_gauss(mat_img, mat):
return_img = []
for j in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
val = reduction_bruit(mat_img, mat, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def reduction_bruit(img, mat, i, j):
somme = 0
for y in range(len(mat)):
for x in range(len(mat[0])):
pixel_i = i - (len(mat[0]) // 2) + x
pixel_j = j - (len(mat) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[y][x]
normalise = int(round(somme / (1/159)))
return min(max(normalise,0), 255)
def filtre_canny(img):
def norme_gradient(pixel1, pixel2):
color_x = pixel1[0]
color_y = pixel2[0]
norm = round(sqrt(color_x**2 + color_y**2))
norm = int(min(norm, 255))
grad = atan2(color_y, color_x)
return norm, grad
def liste_normGrad(im1, im2):
liste = []
for j in range(len(im1)):
ligne = []
for i in range(len(im1[0])):
normGrad = norme_gradient(im1[j][i], im2[j][i])
ligne.append(normGrad)
liste.append(ligne)
return liste
if not is_greyscale(img):
img = greyscale(img)
mat_gauss = [
[2, 4, 5, 4,2],
[4, 9,12, 9,4],
[5,12,15,12,5],
[4, 9,12, 9,4],
[2, 4, 5, 4,2]
]
mat_x = [[-1,0,1]]
mat_y = [[1],[0],[-1]]
#lissage
img = convolution_gauss(img, mat_gauss)
Jx = convolution(img, mat_x)
Jy = convolution(img, mat_y)
normGrad = liste_normGrad(Jx, Jy)