import umage as um from math import sqrt, atan2 def greyscale(mat_img): gray_img = [] for ligne in mat_img: lig = [] for r,g,b in ligne: v = int(r*0.2125 + g*0.7154 + b*0.0721) lig.append((v,)*3) gray_img.append(lig) return gray_img def convolution(mat_img, mat): return_img = [] for j in range(len(mat_img)): ligne = [] for i in range(len(mat_img[0])): val = appliquer_convolution(mat_img, mat, i, j) ligne.append((val,)*3) return_img.append(ligne) return return_img def filtre_sobel(img): def calcul_norme(pixel1, pixel2): valeur = pixel1[0]**2 + pixel2[0]**2 norm = round(sqrt(valeur)) norm = int(min(norm, 255)) return norm def application_norme(im_x, im_y): result_image = [] for j in range(len(im_x)): ligne = [] for i in range(len(im_x[0])): pixel1 = im_x[j][i] pixel2 = im_y[j][i] norme = calcul_norme(pixel1, pixel2) ligne.append((norme,)*3) result_image.append(ligne) return result_image if not is_greyscale(img): img = greyscale(img) mat_x = [[-1,0,1],[-2,0,2],[-1,0,1]] mat_y = [[-1,-2,-1],[0,0,0],[1,2,1]] Gx = convolution(img, mat_x) Gy = convolution(img, mat_y) filtred_image = application_norme(Gx,Gy) return filtred_image ######################################################################### ########################Exercices Supplémentaires######################## ######################################################################### def is_greyscale(img): _greyscale = True for ligne in img: for r,g,b in ligne: if not (r==g and g==b): _greyscale = False break if not _greyscale: break return _greyscale def invert(img): result_image = [] for ligne in img: result_ligne = [] for r,g,b in ligne: result_ligne.append((255-r, 255-g, 255-b)) result_image.append(result_ligne) return result_image def pixel(img, i, j, default=(0,0,0)): #i la colone et j la ligne if 0 <= i < len(img[0]) and 0 <= j < len(img): return img[j][i] else: return default def appliquer_convolution(img, mat, i, j): somme = 0 for y in range(len(mat)): for x in range(len(mat[0])): pixel_i = i - (len(mat[0]) // 2) + x pixel_j = j - (len(mat) // 2) + y pix = pixel(img, pixel_i, pixel_j) somme += pix[0]*mat[y][x] return min(max(somme,0), 255) ###################################################################### ########################Exercices personnelles######################## ###################################################################### def convolution_gauss(mat_img, mat): return_img = [] for j in range(len(mat_img)): ligne = [] for i in range(len(mat_img[0])): val = reduction_bruit(mat_img, mat, i, j) ligne.append((val,)*3) return_img.append(ligne) return return_img def reduction_bruit(img, mat, i, j): somme = 0 for y in range(len(mat)): for x in range(len(mat[0])): pixel_i = i - (len(mat[0]) // 2) + x pixel_j = j - (len(mat) // 2) + y pix = pixel(img, pixel_i, pixel_j) somme += pix[0]*mat[y][x] normalise = int(round(somme / (1/159))) return min(max(normalise,0), 255) def filtre_canny(img): def norme_gradient(pixel1, pixel2): color_x = pixel1[0] color_y = pixel2[0] norm = round(sqrt(color_x**2 + color_y**2)) norm = int(min(norm, 255)) grad = atan2(color_y, color_x) return norm, grad def liste_normGrad(im1, im2): liste = [] for j in range(len(im1)): ligne = [] for i in range(len(im1[0])): normGrad = norme_gradient(im1[j][i], im2[j][i]) ligne.append(normGrad) liste.append(ligne) return liste if not is_greyscale(img): img = greyscale(img) mat_gauss = [ [2, 4, 5, 4,2], [4, 9,12, 9,4], [5,12,15,12,5], [4, 9,12, 9,4], [2, 4, 5, 4,2] ] mat_x = [[-1,0,1]] mat_y = [[1],[0],[-1]] #lissage img = convolution_gauss(img, mat_gauss) Jx = convolution(img, mat_x) Jy = convolution(img, mat_y) normGrad = liste_normGrad(Jx, Jy) image = um.load("my_images\\Zero_Two_1.jpeg") mat_gauss = [ [2, 4, 5, 4,2], [4, 9,12, 9,4], [5,12,15,12,5], [4, 9,12, 9,4], [2, 4, 5, 4,2] ] image = convolution_gauss(image, mat_gauss) um.save(image, "test\\zero_two", "png")