From f8e933cbdc76fa3f329c2fdcb3dd5e9cacc23e23 Mon Sep 17 00:00:00 2001 From: Andy K Date: Sat, 5 Nov 2022 20:48:53 +0100 Subject: [PATCH] Add re_serie_7 --- re_serie_7.py | 164 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 164 insertions(+) create mode 100644 re_serie_7.py diff --git a/re_serie_7.py b/re_serie_7.py new file mode 100644 index 0000000..7730459 --- /dev/null +++ b/re_serie_7.py @@ -0,0 +1,164 @@ +import umage as um +from math import sqrt, atan2 + +def greyscale(mat_img): + gray_img = [] + for ligne in mat_img: + lig = [] + for r,g,b in ligne: + v = int(r*0.2125 + g*0.7154 + b*0.0721) + lig.append((v,)*3) + gray_img.append(lig) + return gray_img + +def convolution(mat_img, mat): + return_img = [] + for j in range(len(mat_img)): + ligne = [] + for i in range(len(mat_img[0])): + val = appliquer_convolution(mat_img, mat, i, j) + ligne.append((val,)*3) + return_img.append(ligne) + return return_img + +def filtre_sobel(img): + + def calcul_norme(pixel1, pixel2): + valeur = pixel1[0]**2 + pixel2[0]**2 + norm = round(sqrt(valeur)) + norm = int(min(norm, 255)) + return norm + + def application_norme(im_x, im_y): + result_image = [] + for j in range(len(im_x)): + ligne = [] + for i in range(len(im_x[0])): + pixel1 = im_x[j][i] + pixel2 = im_y[j][i] + norme = calcul_norme(pixel1, pixel2) + ligne.append((norme,)*3) + result_image.append(ligne) + return result_image + + if not is_greyscale(img): + img = greyscale(img) + + mat_x = [[-1,0,1],[-2,0,2],[-1,0,1]] + mat_y = [[-1,-2,-1],[0,0,0],[1,2,1]] + Gx = convolution(img, mat_x) + Gy = convolution(img, mat_y) + + filtred_image = application_norme(Gx,Gy) + return filtred_image + + + +######################################################################### +########################Exercices Supplémentaires######################## +######################################################################### + +def is_greyscale(img): + _greyscale = True + for ligne in img: + for r,g,b in ligne: + if not (r==g and g==b): + _greyscale = False + break + if not _greyscale: + break + return _greyscale + +def invert(img): + result_image = [] + for ligne in img: + result_ligne = [] + for r,g,b in ligne: + result_ligne.append((255-r, 255-g, 255-b)) + result_image.append(result_ligne) + return result_image + +def pixel(img, i, j, default=(0,0,0)): + #i la colone et j la ligne + if 0 <= i < len(img[0]) and 0 <= j < len(img): + return img[j][i] + else: + return default + +def appliquer_convolution(img, mat, i, j): + somme = 0 + for y in range(len(mat)): + for x in range(len(mat[0])): + pixel_i = i - (len(mat[0]) // 2) + x + pixel_j = j - (len(mat) // 2) + y + pix = pixel(img, pixel_i, pixel_j) + somme += pix[0]*mat[y][x] + return min(max(somme,0), 255) + + + +###################################################################### +########################Exercices personnelles######################## +###################################################################### +def convolution_gauss(mat_img, mat): + return_img = [] + for j in range(len(mat_img)): + ligne = [] + for i in range(len(mat_img[0])): + val = reduction_bruit(mat_img, mat, i, j) + ligne.append((val,)*3) + return_img.append(ligne) + return return_img + +def reduction_bruit(img, mat, i, j): + somme = 0 + for y in range(len(mat)): + for x in range(len(mat[0])): + pixel_i = i - (len(mat[0]) // 2) + x + pixel_j = j - (len(mat) // 2) + y + pix = pixel(img, pixel_i, pixel_j) + somme += pix[0]*mat[y][x] + normalise = int(round(somme / (1/159))) + return min(max(normalise,0), 255) + +def filtre_canny(img): + + def norme_gradient(pixel1, pixel2): + color_x = pixel1[0] + color_y = pixel2[0] + + norm = round(sqrt(color_x**2 + color_y**2)) + norm = int(min(norm, 255)) + + grad = atan2(color_y, color_x) + return norm, grad + + def liste_normGrad(im1, im2): + liste = [] + for j in range(len(im1)): + ligne = [] + for i in range(len(im1[0])): + normGrad = norme_gradient(im1[j][i], im2[j][i]) + ligne.append(normGrad) + liste.append(ligne) + return liste + + if not is_greyscale(img): + img = greyscale(img) + + mat_gauss = [ + [2, 4, 5, 4,2], + [4, 9,12, 9,4], + [5,12,15,12,5], + [4, 9,12, 9,4], + [2, 4, 5, 4,2] + ] + mat_x = [[-1,0,1]] + mat_y = [[1],[0],[-1]] + + #lissage + img = convolution_gauss(img, mat_gauss) + Jx = convolution(img, mat_x) + Jy = convolution(img, mat_y) + normGrad = liste_normGrad(Jx, Jy) +