Filtre de Canny terminé;

Ajout des fonctions utiles au filtre de Canny dans 'usefull_func.py'
Pas de modification important dans 'sobel.py'
This commit is contained in:
Andy K 2022-11-10 16:26:09 +01:00
parent 7da1c028ac
commit 4aa559772c
4 changed files with 241 additions and 59 deletions

2
.gitignore vendored
View File

@ -2,3 +2,5 @@
imageEngine/images/
imageEngine/test/
imageEngine/__pycache__/
imageEngine/filters/__pycache__/
imageEngine/test.py

View File

@ -1,39 +1,32 @@
from usefull_func import *
from math import sqrt, atan2
from copy import deepcopy
from filters.usefull_func import *
from math import sqrt, atan2, pi
#En_cours...
def filtre_canny(img):
def norme_gradient(pixel1, pixel2):
color_x = pixel1[0]
color_y = pixel2[0]
def filtreCanny(img, Th):
Tl = Th / 2
norm = round(sqrt(color_x**2 + color_y**2))
norm = min(norm, 255)
filtred_image = filtre_gaussien(img)
grad = atan2(color_y, color_x)
return norm, grad
norme_gradient, angle_normale_gradient = calculGradient(filtred_image)
def liste_normGrad(im1, im2):
liste = []
for j in range(len(im1)):
ligne = []
for i in range(len(im1[0])):
normGrad = norme_gradient(im1[j][i], im2[j][i])
ligne.append(normGrad)
liste.append(ligne)
return liste
non_maxima = dltNoMaxima(norme_gradient, angle_normale_gradient)
if not is_greyscale(img):
img = greyscale(img)
contours = seuillageHysteresis(non_maxima, angle_normale_gradient, Th, Tl)
mat_x = [[-1,0,1]]
mat_y = [[1],[0],[-1]]
return contours
#lissage/suppression des bri
img_no_bruit = convolution_gauss(img)
Jx = convolution(img, mat_x)
Jy = convolution(img, mat_y)
normGrad = liste_normGrad(Jx, Jy)
#Suppresion des non-maximum
"""
def filtreCannySemiAuto(img, centile):
filtred_image = filtre_gaussien(img)
norme_gradient, angle_normale_gradient = calculGradient(filtred_image)
non_maxima = dltNoMaxima(norme_gradient, angle_normale_gradient)
Th = calculTh(norme_gradient, centile)
Tl = Th / 2
contours = seuillageHysteresis(non_maxima, angle_normale_gradient, Th, Tl)
return contours
"""

View File

@ -1,5 +1,4 @@
from usefull_func import *
from filters.usefull_func import *
def filtre_sobel(img):

View File

@ -1,4 +1,5 @@
from math import sqrt
from copy import deepcopy
from math import atan2, sqrt, pi
def greyscale(mat_img):
gray_img = []
@ -10,26 +11,29 @@ def greyscale(mat_img):
gray_img.append(lig)
return gray_img
def appliquer_convolution(img, mat, i, j):
somme = 0
for y in range(len(mat)):
for x in range(len(mat[0])):
pixel_i = i - (len(mat[0]) // 2) + x
pixel_j = j - (len(mat) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[y][x]
for x in range(len(mat)):
for y in range(len(mat[0])):
coord_i = i - (len(mat) // 2) + x
corrd_j = j - (len(mat[0]) // 2) + y
pix = pixel(img, coord_i, corrd_j)
somme += pix[0]*mat[x][y]
return min(max(somme,0), 255)
def convolution(mat_img, mat):
return_img = []
for j in range(len(mat_img)):
for i in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
for j in range(len(mat_img[0])):
val = appliquer_convolution(mat_img, mat, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def is_greyscale(img):
_greyscale = True
for ligne in img:
@ -41,6 +45,7 @@ def is_greyscale(img):
break
return _greyscale
def invert(img):
result_image = []
for ligne in img:
@ -50,25 +55,28 @@ def invert(img):
result_image.append(result_ligne)
return result_image
def pixel(img, i, j, default=(0,0,0)):
#i la colone et j la ligne
if 0 <= i < len(img[0]) and 0 <= j < len(img):
return img[j][i]
if 0 <= i < len(img) and 0 <= j < len(img[0]):
return img[i][j]
else:
return default
def reduction_bruit(img, mat, i, j):
somme = 0
for y in range(len(mat)):
for x in range(len(mat[0])):
pixel_i = i - (len(mat[0]) // 2) + x
pixel_j = j - (len(mat) // 2) + y
for x in range(len(mat)):
for y in range(len(mat[0])):
pixel_i = i - (len(mat) // 2) + x
pixel_j = j - (len(mat[0]) // 2) + y
pix = pixel(img, pixel_i, pixel_j)
somme += pix[0]*mat[y][x]
somme += pix[0]*mat[x][y]
normalise = round(somme)
return normalise
def convolution_gauss(mat_img):
def filtre_gaussien(mat_img):
mat_gauss = [
[2/159, 4/159, 5/159, 4/159,2/159],
[4/159, 9/159,12/159, 9/159,4/159],
@ -78,28 +86,208 @@ def convolution_gauss(mat_img):
]
return_img = []
for j in range(len(mat_img)):
for i in range(len(mat_img)):
ligne = []
for i in range(len(mat_img[0])):
for j in range(len(mat_img[0])):
val = reduction_bruit(mat_img, mat_gauss, i, j)
ligne.append((val,)*3)
return_img.append(ligne)
return return_img
def calcul_norme(pixel1, pixel2):
valeur = pixel1[0]**2 + pixel2[0]**2
norm = round(sqrt(valeur))
norm = int(min(norm, 255))
return norm
def application_norme(im_x, im_y):
result_image = []
for j in range(len(im_x)):
for i in range(len(im_x)):
ligne = []
for i in range(len(im_x[0])):
pixel1 = im_x[j][i]
pixel2 = im_y[j][i]
for j in range(len(im_x[0])):
pixel1 = im_x[i][j]
pixel2 = im_y[i][j]
norme = calcul_norme(pixel1, pixel2)
ligne.append((norme,)*3)
result_image.append(ligne)
return result_image
def calculGradient(filtred_image):
mask_x = [[1, 0, -1]]
mask_y = [[1],[0],[-1]]
mask_gradient_x = convolution(filtred_image, mask_x)
mask_gradient_y = convolution(filtred_image, mask_y)
norme_gradient = copyNullMatrix(filtred_image)
angle_normal_gradient = copyNullMatrix(filtred_image)
for i in range(len(filtred_image)):
for j in range(len(filtred_image[0])):
Jx = mask_gradient_x[i][j][0]
Jy = mask_gradient_y[i][j][0]
norme_gradient[i][j] = sqrt(Jx**2 + Jy**2)
angle_temp = atan2(Jy,Jx)
angle_normal_gradient[i][j] = transform_angle(angle_temp)
return norme_gradient, angle_normal_gradient
def copyNullMatrix(mat):
nullMat = deepcopy(mat)
for i in range(len(nullMat)):
for j in range(len(nullMat[0])):
nullMat[i][j] = 0
return nullMat
def transform_angle(radient):
angle = radient * 180 / pi
if angle < 0:
angle += 180
#On veut que la valeur de l'angle soit 0, 45, 90 ou 135°
seuil_min_45 = 45/2
seuil_min_90 = (90+45)/2
seuil_min_135 = (135+90)/2
seuil_max_135 = (180+135)/2
if seuil_min_45 <= angle < seuil_min_90:
angle = 45
elif seuil_min_90 <= angle < seuil_min_135:
angle = 90
elif seuil_min_135 <= angle < seuil_max_135:
angle = 135
else:
angle = 0
return angle
def dltNoMaxima(norme_gradient, angle_normal_gradient):
non_maxima = copyNullMatrix(norme_gradient)
for i in range(len(non_maxima)):
for j in range(len(non_maxima[0])):
angle = angle_normal_gradient[i][j]
voisin1, voisin2 = norm_voisin(norme_gradient, angle, i, j)
if norme_gradient[i][j] < voisin1 or norme_gradient[i][j] < voisin2:
non_maxima[i][j] = 0
else:
non_maxima[i][j] = norme_gradient[i][j]
return non_maxima
def get_norm(norm_list, i, j):
norm = 0
if 0 <= i < len(norm_list) and 0 <= j < len(norm_list[0]):
norm = norm_list[i][j]
return norm
def norm_voisin(norm_list, angle, i, j):
voisin1 = None
voisin2 = None
if angle == 0:
voisin1 = get_norm(norm_list,i,j-1)
voisin2 = get_norm(norm_list,i,j+1)
elif angle == 45:
voisin2 = get_norm(norm_list,i-1,j+1)
voisin1 = get_norm(norm_list,i+1,j-1)
elif angle == 90:
voisin1 = get_norm(norm_list,i-1,j)
voisin2 = get_norm(norm_list,i+1,j)
elif angle == 135:
voisin2 = get_norm(norm_list,i-1,j-1)
voisin1 = get_norm(norm_list,i+1,j+1)
return voisin1, voisin2
def seuillageHysteresis(non_maxima, angle_normale_gradient, Th, Tl):
contours = deepcopy(non_maxima)
for i in range(len(angle_normale_gradient)):
for j in range(len(angle_normale_gradient[0])):
if non_maxima[i][j] > Th:
contours[i][j] = (255,)*3
elif non_maxima[i][j] < Tl:
contours[i][j] = (0,)*3
for i in range(len(angle_normale_gradient)):
for j in range(len(angle_normale_gradient[0])):
if Tl <= non_maxima[i][j] <= Th:
angle = angle_normale_gradient[i][j] + 90
if angle >= 180:
angle -= 180
voisin1, voisin2 = norm_voisin(non_maxima, angle, i, j)
if voisin1 > Th and voisin2 > Th:
contours[i][j] = (255,)*3
else:
contours[i][j] = (0,)*3
return contours
"""
def calculTh(norme_gradient, centile):
histogramme, pas = calculHistogram(norme_gradient)
fonctionRepartition = calculFonctionRepartition(histogramme)
nbrPixels = len(norme_gradient)*len(norme_gradient[0])
pivot = nbrPixels * centile
Th_index = 0
for i in range(len(fonctionRepartition)):
if (pivot - fonctionRepartition[0][Th_index]) > (pivot - fonctionRepartition[0][i]) and (pivot - fonctionRepartition[i] > 0):
Th_index = i
Th = pas * (Th_index - 1)
return Th
def calculHistogram(norme_gradient):
norme_max = Maxi(norme_gradient)
norme_min = Minim(norme_gradient)
ecart = norme_max - norme_min
nb_pas = 1000
pas = ecart / (nb_pas - 1)
histogram = [[0]*nb_pas]
for i in range(len(norme_gradient)):
for j in range(len(norme_gradient[0])):
valeur_pixel = norme_gradient[i][j]
position = floor((valeur_pixel - norme_min) / pas)
histogram[0][position] += 1
return histogram, pas
def calculFonctionRepartition(histogram):
fonctionRepartition = deepcopy(histogram)
for i in range(1, len(fonctionRepartition[0])):
fonctionRepartition[0][i] = fonctionRepartition[0][i-1] + histogram[0][i-1]
return fonctionRepartition
def Maxi(mat):
mx = 0
for i in range(len(mat)):
for j in range(len(mat[0])):
if mat[i][j] > mx:
mx = mat[i][j]
return mx
def Minim(mat):
mn = 1000
for i in range(len(mat)):
for j in range(len(mat[0])):
if mat[i][j] < mn:
mn = mat[i][j]
return mn
"""